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Let h(p) be the percolation probability of a d-dimensional bond percolation
process on Zd. We prove that 1−h(p) can be written as an absolutely con-
vergent series in powers of (1−p)/p, provided that |(1−p)/p| is sufficiently
small. This implies that h(p) is an analytic function of the complex variable p,
around p=1.
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1. INTRODUCTION

Consider a translation invariant bond percolation process on the d-dimen-
sional cubic lattice. A bond is open with probability p and closed with
probability 1−p. Let h(p) be the percolation probability of such a process.
It is well known that this percolation model presents a phase transition if
d \ 2, i.e., h(p), as a function of p ¥ [0, 1], is zero for 0 [ p < pc and
strictly positive for pc < p [ 1, where pc is the critical probability, with
0 < pc < 1 for d \ 2.
The function h(p) is known to be C. in the interval (pc, 1] (see, e.g.,

ref. 1 and references therein). It remained as an open problem to know
whether or not the percolation probability is an analytic function in the
same interval. The general belief is that following conjecture is true:

Conjecture. h(p) is an analytic function in (pc, 1].

It is surprising that there is no proof of this conjecture even for p close
to 1 since in this regime one expects that cluster-type expansion methods



could be applied. We observe that this in not just an academic matter. For
instance, there are examples of disordered systems in statistical mechanics
that develop a Griffiths singularity, i.e., systems that have a phase transi-
tion point even though their free energy is a C. function. In this paper we
prove that

Theorem 1.1. h(p) is an analytic function of the complex variable p
around p=1.

Our proof of the above theorem is based upon a polymer gas represen-
tation for 1−h(p). The polymer expansion is a standard technique in equilib-
rium statistical mechanics and quantum field theory (see, e.g., refs. 2–4)
and its has been applied with success to many different problems.
Although a polymer expansion for the percolation model for p % 0 is

immediate (in this case, lattice animals play the role of polymers), it is not
clear how to do it for p % 1. As a matter of fact, in this regime the ‘‘statis-
tical weight’’ of animals is controlled by the closed edges of the animal’s
boundary, i.e., a lattice animal has a small statistical weight if it has a large
number of such closed edges, and open edges are expected to give a
negligible contribution to this weight. If one proceeds analogously as in the
small p regime, by throwing out the contribution of the open edges, then
one can bound above 1−h(p) by a series in powers of |1−p|. At this point
one should conclude convergence if the number of lattice animals passing
through a fixed point and with n closed edges in the boundary grows as Cn.
Unfortunately this is not true because this number actually grows faster
than Cn for any positive constant C.
In this paper we show that there is a suitable way of defining polymers

so that the polymer expansion for 1−h(p) converges uniformly for complex
values of p close enough to p=1. This will imply that h(p) is analytic
around p=1.
We believe that our results can be extended to all values of p inside the

interval (pc, 1]. We also point out that our approach to this problem may
shed some light on other very interesting questions. For instance, in order
to prove the Ornstein–Zernike behaviour of the finite connectivity function
in the supercritical regime, one should first establish its analyticity around
p=1, and we are working on this issue (see ref. 5 for a proof of the O-Z
behaviour in the subcritical regime). The methods of this paper can also be
extended, with no extra effort, to finite range percolation and, under some
conditions on the decay rate of probabilities, to infinite range percolation.
This paper is divided as follows: in Section 2 we give some definitions

and we make some remarks on finite volume probabilities; in Section 3 we
define the polymers and we provide a polymer gas representation for the
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finite volume percolation probability; in Section 4 we give some entropy
estimates; in Section 5 we prove the main theorem.

2. PRELIMINARIES

We denote the unit square lattice by Zd. If R … Zd is finite we denote
by |R| the number of its elements. If x ¥ Zd and y ¥ Zd, then ||x−y|| denotes
the Euclidean distance between x and y. An unordered pair b={x, y} … Zd

such that ||x−y||=1 is called a bond in Zd. Two distinct bonds b, bŒ are
said to be connected if b 5 bŒ ]”. B(Zd) denotes the set of bonds in Zd.
To each bond b ¥ B(Zd) it is assigned a random variable wb which takes
the value 1 (the bond is open) with probability p and 0 (the bond is closed )
with probability q=1−p, i.e., dm(wb)=pd(wb−1) dwb+qd(wb) dwb.
A configuration is a function w: B(Zd)Q {0, 1} over the set of bonds,
assuming the values 0 or 1. The configuration space is the set of all such
functions, usually denoted by W. A (translation invariant) bond percolation
process is the product measure P=<b dm( · ), b ¥ B(Zd), defined on the
s-algebra generated by the cylinder sets of W.
An open cluster of a configuration w ¥ W is a pairwise connected set

of open bonds. We denote by C the open cluster that contains the origin.
A fundamental quantity of interest is the percolation probability h(p),
which is defined as the probability that the open cluster containing the
origin C is infinite, i.e.,

h(p)=P(|C|=.) (2.1)

The percolation probability (2.1) can be rewritten as h(p)=1−hc(p),
where

hc(p)=P(|C| <+.) (2.2)

hc(p) can be seen as the (infinite volume) limit of a sequence of (finite
volume) functions as follows: let N be a positive integer and consider the
box L — [−N, N]d 5 Zd. Let B(L) denote the set of all bonds in L. Define
“L — {(x1,..., xd) ¥ L; |xi |=N, for some 1 [ i [ d} and “B(L) — {b ¥ B(L);
b 5 “L ]”}, respectively, as the pointwise and bondwise boundary of L.
Let hcL(p) be the probability that the open cluster through the origin does
not reach the boundary of L:

hcL(p)=P(C 5 “B(L)=”) (2.3)
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The function hcL(p) is related to the percolation probability h(p) through
the limit (the limit LQ. means that NQ+.)

lim
LQ.

hcL(p)=h
c(p)=1−h(p), for all p ¥ [0, 1] (2.4)

In the next section we will rewrite hcL(p) as a series in powers of
(1−p)/p. To reach our goal, we will rewrite hcL(p) as a typical statistical
mechanics expected value. Given a configuration wL ¥ WL, where WL is the
configuration space in L, we denote by AwL the set of all open bonds of wL
and by FwL the set of all closed bonds of wL. The probability assigned to
a given configuration wL is given by

P(wL)=p |AwL |(1−p) |FwL | (2.5)

Of course (2.5) is a genuine probability in the sense that

1= C
wL ¥ WL

P(wL) (2.6)

Defining the function l(p)

l(p)=
1−p
p

(2.7)

we rewrite (2.6) as follows:

1=p |B(L)| C
wL ¥ WL

[l(p)] |FwL | (2.8)

Based on (2.8), we introduce the function

ZL(l)= C
wL ¥ WL

l |FwL | (2.9)

where l ¥ C, and we rewrite (2.8) as

p |B(L)|=
1

ZL(l(p))
(2.10)

Explicitly, we have a representation for hcL(p) as

hcL(p)= C
wL ¥ WL
C 5 “L=”

p |AwL |(1−p) |FwL |=
1

ZL(l(p))
C

wL ¥ WL
C 5 “L=”

[l(p)] |FwL | (2.11)
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The ratio given on the r.h.s. of (2.11) allows us to reinterpret hcL(p) as an
expected value in sense of classical statistical mechanics. Starting from this
ratio, we develop a representation for hcL(p) in terms of suitable geometri-
cal objects, called polymers, which will allow us to use the polymer expan-
sion in order to prove Theorem 1.1.

3. THE POLYMER EXPANSION

We are interested in studying the analytical properties of the percola-
tion probability h(p) in the region near p=1. To do so, we will initially
show that the function hcL(p) can be represented, near p=1, as a ratio
involving a suitable partition function. Given a configuration wL ¥ WL, we
associate to each closed bond b ¥ FwL a (d−1)-dimensional unit hyper-
square s which cuts perpendicularly the closed bond in the middle point.
The vertices of the hypersquare lay in the so called dual lattice Lg. Two
hypersquares s and sŒ are said to be connected if they share a (d−2)-
dimensional side.
We define a dual lattice animal c as the (pairwise) connected union of

such hypersquares. We say that two dual animals ci and cj are compatible,
and we write it as ci ’ cj, if dim(ci 5 cj) [ d−3. We denote by CL the set of
dual animals in Lg, while C will denote the set of dual animals in Zd*.
A configuration wL determines uniquely a configuration of (pairwise)
compatible dual animals {c1,..., cn} … CL on the dual lattice. We will
sometimes regard a dual animal as a (d−1)-dimensional surface in Rd.
The interior of a dual animal is the union of the bounded connected
components of Rd− c and it will be denoted by I(c) (see Fig. 1 for a
two-dimensional example).
We will denote by |c| the number of hyper-squares which form c.

Finally, to any dual animal c we associate a a statistical weight l |c|.
With these notations the function (2.9) can be rewritten as

ZL(l)=1+C
n \ 1

C
{c1,..., cn} … CL

ci ’ cj

l |c1| · · ·l |cn| (3.1)

where the factor 1 corresponds to the configuration wL where all bonds are
open (hence no dual animals are present). The r.h.s. of (3.1) is the standard
grand canonical partition function of a hard core gas of compatible dual
animals c with activities l |c| (see, e.g., refs. 3 and 6)
The function hcL(p) can also be expressed in terms of dual animals. In

fact, note that the constraint in the summation of r.h.s. of (2.11) to sum
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Fig. 1. Two compatible dual animals in Lg . Their interiors are the regions marked in grey.
The dual animal on the right does not reach the boundary “B(L) and has the origin is its
interior. The dual animal on the left reaches “B(L).

over those wL such that C 5 “B(L)=” can be rephrased as to sum over
dual animal configurations {c1,..., cn} such that there exists ci with 0 ¥ I(ci).
Thus, recalling (2.11) we get

hcL(p)=

C
n \ 1

C
{c1,..., cn} … CL : ci ’ cj

,ck : 0 ¥ I(ck)

l |c1| · · ·l |cn|

1+C
n \ 1

C
{c1,..., cn} … CL

ci ’ cj

l |c1| · · ·l |cn|
(3.2)

We will now re-express hcL(p) as a series in powers of l. In order to do
that we will need some new definitions.

Definition 3.1. A polymer c̃ will be a collection of dual animals
{c1,..., cn} satisfying the following conditions:

• n=1 or

• ci ’ cj and 0 ¥ I(ci) for all i, j=1, 2...n, with n \ 2.
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Fig. 2. A polymer c̃ made by three dual animals c1, c2 and c3. The area in grey is the interior
of c̃.

See Fig. 2 for a two dimensional example of a polymer. The set of all
polymers contained in Lg will be denoted by C̃L, while the set of all poly-
mers contained in Zd* will be denoted by C̃. Defining the interior of c̃ as
I(c̃) —4n

i=1 I(ci), we have a new notion of compatibility:

Definition 3.2. We say that the polymers c̃a and c̃b are compatible if

• ca ’ cb for all ca ¥ c̃a and all cb ¥ c̃b.

• 0 ¨ I(c̃a) or 0 ¨ I(c̃b).

We denote the compatibility of c̃a and c̃b by c̃a % c̃b.
We denote by |c̃ | the number of hyper-squares in c̃, i.e., |c̃ |=;i |ci |.
The statistical weight of the polymer c̃ is l |c̃ |. By construction we have

that

1+C
n \ 1

C
{c1,..., cn} … CL

ci ’ cj

l |c1| · · ·l |cn|=1+C
n \ 1

C
{c̃1,..., c̃n} … C̃L

c̃i % c̃j

l |c̃1| · · ·l |c̃n| (3.3)
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and that

C
n \ 1

C
{c1,..., cn} … CL

ci ’ cj, ,ck : 0 ¥ I(ck)

l |c1| · · ·l |cn|=C
n \ 1

C
{c̃1,..., c̃n} … C̃L

c̃i % c̃j, ,!c̃k : 0 ¥ I(c̃k)

l |c̃1| · · ·l |c̃n| (3.4)

Note that in the sum over the polymer configurations {c̃1,..., c̃n} on
the r.h.s. of (3.4) just one and only one polymer contains the origin in its
interior. This is a crucial difference with the sum in l.h.s of (3.4).
By (3.3) and (3.4) we can rewrite

hcL(p)=

C
n \ 1

C
{c̃1,..., c̃n} … C̃L

c̃i % c̃j, ,!c̃k : 0 ¥ I(c̃k)

l |c̃1| · · ·l |c̃n|

1+C
n \ 1

C
{c̃1,..., c̃n} … C̃L

c̃i % c̃j

l |c̃1| · · ·l |c̃n|
(3.5)

where l is evaluated at l(p).
Now the polymer representation (3.5) allows us to express the function

hcL(p) as a derivative of the logarithm of a suitable partition function. To
see it, we define a new activity for the polymers c̃. Let a ¥ R and c̃ ¥ C̃ and
define

ra(c̃)=˛
(1+a) l |c̃ | if 0 ¥ I(c̃)
l |c̃ | otherwise

(3.6)

Let XL, a(l) denote the grand canonical partition function

XL, a(l)=1+C
n \ 1

C
{c̃1,..., c̃n} … C̃L

c̃i % c̃j

ra(c̃1) · · ·ra(c̃n) (3.7)

and let

fL(l)=
“

“a
:
a=0
ln XL, a(l) (3.8)

Then, one can now easily check that

hcL(p)=fL(l(p)) (3.9)

The great advantage of formulas (3.7)–(3.9) is that they allow us to re-
express fL(l), and consequently h

c
L(p), directly as a series instead of a ratio

between two (finite) sums as it is in (3.5). As a matter of fact, the r.h.s. of
(3.7) is again the grand canonical partition function of a hard core polymer
gas in which the polymers are objects in C̃L, with activities given by ra(c̃)
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and interacting via a hard core potential (in the sense that they must be
compatible). Namely, defining

U(c̃i, c̃j)=˛
+. if c̃i %̂ c̃j
0 otherwise

(3.10)

the r.h.s. of (3.7) can be rewritten as

XL, a(l)=1+C
n \ 1

1
n!

C
(c̃1,..., c̃n) ¥ (C̃L)

n
ra(c̃1) · · ·ra(c̃n) e−;1 [ i < j [ n U(c̃i, c̃j) (3.11)

where (C̃L)n is the n-times cartesian product of C̃L.
It is thus a standard task in cluster expansion theory to compute

explicitly the Mayer expansion for the function ln XL, a(l) (see, e.g., refs. 4
and 6). Doing such a calculation one obtains

ln XL, a(l)=C
.

n=1

1
n!

C
(c̃1...c̃n) ¥ (C̃L)

n
FT(c̃1,..., c̃n) ra(c̃1)...ra(c̃n) (3.12)

where the Ursell coefficients FT(c̃1,..., c̃n) are given by

FT(c̃1,..., c̃n)=˛ C
g ¥ Gn

D
{i, j} ¥ g

(e −U(c̃i, c̃j)−1) if n \ 2

1 if n=1
(3.13)

The sum in (3.13) is over all connected graphs on {1, 2,..., n}. It is impor-
tant to stress that the sum in the r.h.s. of (3.12) is actually an infinite series,
while the sums in (3.5) are finite. In the next section we will show that such
a series is absolutely convergent for |l| sufficiently small uniformily in L.
Deriving it term by term with respect to a and evaluating the result at
a=0, it is clear, by definition (3.6), that the only non vanishing terms are
those associated to configurations c̃1,..., c̃n in which at least one among the
c̃i’s contains the origin in its interior. Thus we obtain

fL(l)=C
.

n=1

1
n!

C
(c̃1 · · · c̃n) ¥ (C̃L)

n

,!c̃k : 0 ¥ I(c̃k)

k(c̃1,..., c̃n) FT(c̃1,..., c̃n) l;
n
i=1 |c̃i | (3.14)

The positive integer k(c̃1,..., c̃n), is the number of polymers in (c̃1,..., c̃n)
having the origin in its interior. Note that k(c̃1,..., c̃n) [ n. We also remark
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that r.h.s. of (3.14) is a series in powers of l. In the sequel, we will
show that

Theorem 3.1. There exists a positive constant l0, which is inde-
pendent of the volume L, such that the series given by Eq. (3.14) converges
absolutely for complex values of l inside the disk |l| < l0.

Remark. From the proof of the above theorem, we will see that
l0=1/(6 · 2deC0), where C0 is given in Lemma 4.1.

A standard corollary of the above theorem (see, e.g., ref. 3, Theorem
20.4.2) is

Corollary 3.1. For any box L, the function fL(l) in (3.14) is
analytic in the complex disk |l| < l0 and the limit

f(l)= lim
LQ.

fL(l) (3.15)

exists and is analytic in the same disk.

We postpone the proof of Theorem 3.1 and Corollary 3.1 to Section 5.

Remark. By Corollary 3.1, the function f((1−z)/z) is analytic in
the complex domain D={z ¥ C : |(1−z)/z| < l0} and, by (2.4) and (3.9),
f((1−p)/p)=hc(p) for p ¥ [0, 1]. Hence f((1−z)/z) is the unique
analytic continuation of hc(p) to the domain D. This proves Theorem 1.1.

4. ENTROPY ESTIMATES

In order to prove Theorem 3.1 we will need some preliminary lemmas
related to entropy estimates.
Let us thus denote by Sd the set of all (d−1)-dimensional hyper-

squares s on the dual lattice Zd*. Given s ¥ Sd, let us denote by Sd the
number of hyper-squares sŒ incompatible with s and not equal to s. Note
that Sd=6(d−1). We will initially prove that

Lemma 4.1. The number of dual animals c of a given size |c|=n
that pass through a given point xg ¥ Zd* is at most exponential in |c|, i.e.,
for all xg ¥ Zd* and n ¥N

C
c : x* ¥ c
|c|=n

1 [ Cn0 (4.1)

where C0=S
−1
d (1+Sd)

1+Sd
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Proof. Let 0g be the origin of the dual lattice. By translation invariance,
it is enough to show that

C
c : 0* ¥ c
|c|=n

1 [ Cn0 (4.2)

We start observing that the probability to have a dual animal c is given by
P(c)=(1−p) |c| p |“c| where “c is the boundary of the dual animal c defined
as “c={s ¨ c : s ’̂ sŒ, for some sŒ ¥ c}. Noting that |“c| [ Sd |c|, we have

C
c : 0* ¥ c
|c|=n

(1−p) |c| pSd |c| [ C
c : 0* ¥ c
|c|=n

(1−p) |c| p |“c| < 1

where the middle term in the above inequality is the probability of having
a dual animal of size n passing by 0g. Thus we have

C
c : 0* ¥ c
|c|=n

1 [ 5 1
(1−p) pSd
6n [ 3(1+Sd) 5

1+Sd
Sd
6Sd 4n

and therefore the lemma is proved. L

We next prove the following lemma.

Lemma 4.2. The number of dual animals c of a given cardinality
|c|=n such that 0 ¥ I(c) is at most exponential in n, i.e., for all n ¥N

C
c : 0 ¥ I(c)
|c|=n

1 [ Cn1 (4.3)

where C1=2dC0 and C0 is given in Lemma 4.1.

Proof. Using that the volume of the interior of a dual animal c of
cardinality n is at most nd and applying Lemma 4.1, we get

C
c : I(c) ]”
|c|=n

1 [ nd C
c : 0* ¥ c
|c|=n

1 [ 2dnCn0 [ C
n
1 L

Finally, we prove the main entropy estimate
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Lemma 4.3. The number of polymers c̃ of a given cardinality
|c̃ |=n and with 0 ¥ I(c̃) is at most exponential in n, i.e., for all n ¥N

C
c̃ : 0 ¥ I(c̃)
|c̃ |=n

1 [ Cn2 (4.4)

where C2=2C1 and C1 is given in Lemma 4.2.

Proof. Recall that a polymer c̃ is a collection of compatible dual
animals the form c̃={c1,..., ck} such that I(ci) ¦ 0. Hence if |c̃ |=n, then
clearly 1 [ k [ n. Using thus Lemma 4.2, it is straightfoward to see that the
sum (4.4) is bounded above by

C
n

k=1
C

|c1|+· · ·+|ck|=n
D
k

i=1

1 C
c : 0 ¥ I(c)
|c|=|ci |

12

[ C
n

k=1
C

|c1|+· · ·+|ck|=n
D
k

i=1
(C |ci |1 )=C

n

k=1
C

|c1|+· · ·+|ck|=n
Cn1

[ Cn1 C
n

k=1
C

|c1|+· · ·+|ck|=n
1 [ Cn1 C

n

k=1

1n−1
k−1
2=Cn12n−1 [ Cn2 L (4.5)

5. PROOF OF THEOREM 3.1

We will bound, uniformly in L, the series given by Eq. (3.14). We
remind that the polymer configurations {c̃1,..., c̃n} contributing to the sum
(3.14) have at least one polymer whose interior contains the origin. Thus
we get

|fL(l)| [ C
c̃1 ¥ C̃L : I(c̃1) ¦ 0

|l| |c̃1| 51+C
n \ 2

n
(n−1)!

Bn,L(c̃1)6 (5.1)

where

Bn, L(c̃) — C
(c̃2...c̃n) ¥ (C̃L)

n−1
|FT(c̃, c̃2,..., c̃n) l;

n
i=2 |c̃i ||

To continue, we need an upper bound for Bn, L(c̃). Define

n — C
c̃ ¥ C̃
0* ¥ c̃

(e |l|) |c̃ |+ C
c̃ ¥ C̃
0 ¥ I(c̃)

(e |l|) |c̃ | (5.2)
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Note that n does not depend on L for in (5.2) we are summing on C̃ rather
than on C̃L. In the sequel we will make use of the following lemma whose
proof appears below.

Lemma 5.1. For n \ 2, for any L and for any polymer c̃:

Bn,L(c̃) [ (n−1)! e |c̃ |[2dn]n−1 (5.3)

Plugging estimate (5.3) into (5.1), we get

|fL(l)| [ C
c̃ ¥ C̃L : I(c̃) ¦ 0

|l| |c̃ | 51+e |c̃ | C
n \ 2
n(2dn)n−16 . (5.4)

The series ;n \ 2 n(2
dn)n−1 will converge and will be bounded by 3 if 2dn <

1/2 and this condition will be achieved if |l| [ 1/(4d12eC0), where C0 is
the constant in Lemma 4.1. As a matter of fact, using Lemmas 4.2 and 4.3,
we get

n [ C
n \ 1

5 C
c̃ : 0* ¥ c̃
|c̃ |=n

(|l| e)n+ C
c̃ : 0 ¥ I(c̃)
|c̃ |=n

(|l| e)n6 [ C
n \ 1
[(|l| eC1)n+(|l| eC2)n]

Remembering that C2=2C1, the last sum above converges if |l| eC1 < 1/2
and it is less than 6|l| eC1 if |l| eC1 < 1/4. Thus, recalling that C1=2dC0
where C0 is the constant of Lemma 4.1, the condition 2dn < 1/2 is achieved
if |l| < 1/(4d12eC0). Using now the upper bound (5.4), using Lemma 4.3
once again and using that ;n \ 2 n(2

dn)n−1 < 3 for l inside the disc |l| <
1/(4d12eC0), we get

|fL(l)| [ C
c̃ ¥ C̃L
I(c̃) ¦ 0

|l| |c̃ | [1+3e |c̃ |] [ C
c̃ ¥ C̃
I(c̃) ¦ 0

|l| |c̃ | [1+3e |c̃ |]

[ C
n \ 2d

C
c̃ : 0 ¥ I(c̃)
|c̃ |=n

[|l| |c̃ |+3(e |l|) |c̃ |]

[ C
n \ 2d
[(C2 |l|)n+3(C2 |l| e)n] [ C

n \ 2d
[(2d2C0 |l|)n+3(2d2C0 |l| e)n]

The last sum is absolutely convergent for |l| < 1/(4d12eC0) and it is bounded
at least by

|fL(l)| [ 8(Ed |l|)2d if |l| <
1

4d12eC0
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where Ed [ (2d+1eC0). Note that Ed |l| [ 1/6 · 2d < 1/6 in the whole disc
|l| < 1/4d12eC0.We stress that such bounds are far from optimal. L

Proof of Lemma 5.1. To get the upper bound (5.3), we will make
use of the following well known bound

: C
g ¥ Gn

D
{i,j} ¥ g

(e−U(c̃i, c̃j)−1) : [ C
y ¥ Tn

D
{i,j} ¥ y

|e −U(c̃i , c̃j)−1| (5.5)

where the sum on the left is over all connected graphs on {1, 2,..., n} and
the sum on the right is over the tree graphs on {1, 2,..., n} (see, e.g., ref. 2).
For a fixed y ¥ Tn, it is now easy to calculate exactly the factor

<{i, j} ¥ y |e
−Ũ(c̃i , c̃j)−1|. As a matter of fact, let g(c̃1,..., c̃n) bet the graph on

{1, 2,..., n} (not necessarly connected) defined by

{i,j} ¥ g(c̃1,...,c̃n) if and only if c̃i %̂ c̃j (5.6)

Hence, recalling definition (3.10), we have that

D
{i,j} ¥ y

|e−Ũ(c̃i , c̃j)−1|=˛1 if y … g(c̃1,..., c̃n)
0 otherwise

(5.7)

where y … g(c̃1,..., c̃n) means that if {i, j} ¥ y then {i, j} ¥ g(c̃1,..., c̃n). Thus,
using (5.5) and (5.7) we can bound |Bn, L(c̃1)| from above as

Bn, L(c̃1) [ C
y ¥ Tn

5 C
(c̃2 · · · c̃n) ¥ (C̃)

n−1
D
{i,j} ¥ y

|e−U(c̃i,c̃j)−1| l;
n
i=2 |c̃i |6

[ C
y ¥ Tn

5 C
(c̃2...c̃n) ¥ (CL)

n−1

g(c̃1,...,c̃n) ‡ y

|l| |c̃2| · · · |l| |c̃n|6 — C
y ¥ Tn

w(y)

To obtain an upper bound for w(y), we will use the following inequality.
Let c̃0 be fixed and let F(c̃) be a given positive function. Then

C
c̃ : c̃ %̂ c̃0

F(c̃) [ 2d |c̃0 | sup
x* ¥ c̃0

C
c̃ : x* ¥ c̃

F(c̃)+ C
c̃ : 0 ¥ I(c̃)

F(c̃)

[ 2d |c̃0 | 5 C
c̃ : 0* ¥ c̃

F(c̃)+ C
c̃ : 0 ¥ I(c̃)

F(c̃)6

— 2d |c̃0 | C*
c̃

F(c̃) (5.8)
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Fixed the tree graph y, let di be the degree of the vertex i. Evaluating
the sum w(y) by summing from the outermost polymers in the graph
g(c̃1,..., c̃n) ‡ y and using (5.8), we get

w(y) [ [2d |c̃1 |]d1 D
n

i=2

5C*
c̃

[2d |c̃i |]di −1 |l| |c̃i |6

Therefore, using the above estimate and the CayleyŒs formula (A.1) again,
we get

Bn,L(c̃1) [ C
y ¥ Tn

w(y)

[ C
d1+· · ·+dn=2n−2

[2d |c̃1 |]d1
(n−2)!

<n
i=1 (di −1)!

D
n

i=2

5C*
c̃

[2d |c̃i |]di-1 |l| |c̃i |6

[ 2 (n−1) d (n−1)! C
.

d1=1

|c̃1 |d1

d1!
D
n

i=2

5C*
c̃

C
.

di=1

|c̃i |di −1

(di −1)!
|l| |c̃i |6

[ 2 (n−1) d(n−1)! e |c̃1| D
n

i=2

5C*
c̃

(e |l|) |c̃i |6 [ (n−1)! e |c̃ |[2dn]n−1

Sketch of the Proof of Corollary 3.1. Concerning the proof of
Corollary 3.1, it is obvious from the proof of Theorem 3.1 that fL(l) is
analytic in l in the disc |l| < l0 uniformly in L. The existence and analyti-
city of the limit f(l)=limLQ. fL(l) follows by proving that fL(l) is, as
NQ. (and hence LQ.), a Cauchy sequence uniformly in the disc
|l| < l0. This is a text book exercise in the theory of cluster expansion (see
ref. 3, Theorem 20.4.2). One has just to observe that fL(l)−fLŒ(l) (sup-
posing L … LŒ) can be written in term of a sum over n-ple of polymers
(c̃1,..., c̃n) in which all polymers have non void intersection with LŒ0L and
at least one of them has interior containing the origin. Thus the power
series in l of fL(l)−fLŒ(l) starts at least with the power |l|d(0, “L) where
d(0, “L) is the minimum distance between the origin and the boundary of
L. This power takes fL(l)−fLŒ(l) to zero as LQ.. L
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